Classification of EEG Signals in Depressed Patients
نویسندگان
چکیده
منابع مشابه
Classification of EEG Signals for Discrimination of Two Imagined Words
In this study, a Brain-Computer Interface (BCI) in Silent-Talk application was implemented. The goal was an electroencephalograph (EEG) classifier for three different classes including two imagined words (Man and Red) and the silence. During the experiment, subjects were requested to silently repeat one of the two words or do nothing in a pre-selected random order. EEG signals were recorded by ...
متن کاملApplying Genetic Algorithm to EEG Signals for Feature Reduction in Mental Task Classification
Brain-Computer interface systems are a new mode of communication which provides a new path between brain and its surrounding by processing EEG signals measured in different mental states. Therefore, choosing suitable features is demanded for a good BCI communication. In this regard, one of the points to be considered is feature vector dimensionality. We present a method of feature reduction us...
متن کاملClassification of Ictal and Interictal Eeg Signals
An electroencephalogram (EEG) is a graphical record of ongoing electrical activity produced by firing of neurons of the human brain due to internal and/or external stimuli. Feature extraction and classification of the EEG signals are used for diagnosis the epileptic seizure (i.e., physical changes in behaviour that occur due to abnormal electrical activity in the brain). Classification of Ictal...
متن کاملReligious Psychotherapy in Depressed Patients
چکیده: این مطالعه به منظور تعیین نتایج روان درمانی در قوم مالایا که از زمینه فرهنگی و مذهبی قوی برخوردار هستند، انجام شده است. بیماران به دو گروه مورد مطالعه کنترل که هر کدام شامل ۳۲ بیمار افسرده بوده، تقسیم شدند. در گروه مورد مطالعه، ۲۰-۱۵ جلسه کوتاه مدت روان درمانی با یک نگرش ذهبی صورت گرفت. در حالی که برای گروه کنترل دیدگاه مذهبی حذف شده بود. گروه تحت مطالعه در طی سه ماه اول از شروع مطالعه ...
متن کاملComparing diagnosis of depression in depressed patients by EEG, based on two algorithms :Artificial Nerve Networks and Neuro-Fuzy Networks
Background and aims: Depression disorder is one of the most common diseases, but the diagnosis is widely complicated and controversial because of interventions, overlapping and confusing nature of the disease. So, keeping previous patients’ profile seems effective for diagnosis and treatment of present patients. Use of this memory is latent in synthetic neuro-fuzzy algorithm. P...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Balkan Journal of Electrical and Computer Engineering
سال: 2020
ISSN: 2147-284X
DOI: 10.17694/bajece.631951